首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11196篇
  免费   916篇
  国内免费   668篇
电工技术   198篇
综合类   702篇
化学工业   2965篇
金属工艺   608篇
机械仪表   454篇
建筑科学   345篇
矿业工程   202篇
能源动力   1859篇
轻工业   84篇
水利工程   54篇
石油天然气   2711篇
武器工业   28篇
无线电   372篇
一般工业技术   1010篇
冶金工业   120篇
原子能技术   29篇
自动化技术   1039篇
  2024年   34篇
  2023年   541篇
  2022年   506篇
  2021年   542篇
  2020年   836篇
  2019年   803篇
  2018年   477篇
  2017年   548篇
  2016年   672篇
  2015年   691篇
  2014年   930篇
  2013年   1144篇
  2012年   786篇
  2011年   734篇
  2010年   610篇
  2009年   604篇
  2008年   315篇
  2007年   418篇
  2006年   440篇
  2005年   258篇
  2004年   133篇
  2003年   125篇
  2002年   148篇
  2001年   164篇
  2000年   97篇
  1999年   127篇
  1998年   45篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   6篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1984年   5篇
  1982年   2篇
  1981年   2篇
  1980年   5篇
  1978年   1篇
  1977年   1篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
11.
In the last few decades, global warming, environmental pollution, and an energy shortage of fossil fuel may cause a severe economic crisis and health threats. Storage, conversion, and application of regenerable and dispersive energy would be a promising solution to release this crisis. The development of porous carbon materials from regenerated biomass are competent methods to store energy with high performance and limited environmental damages. In this regard, bio-carbon with abundant surface functional groups and an easily tunable three-dimensional porous structure may be a potential candidate as a sustainable and green carbon material. Up to now, although some literature has screened the biomass source, reaction temperature, and activator dosage during thermochemical synthesis, a comprehensive evaluation and a detailed discussion of the relationship between raw materials, preparation methods, and the structural and chemical properties of carbon materials are still lacking. Hence, in this review, we first assess the recent advancements in carbonization and activation process of biomass with different compositions and the activity performance in various energy storage applications including supercapacitors, lithium-ion batteries, and hydrogen storage, highlighting the mechanisms and open questions in current energy society. After that, the connections between preparation methods and porous carbon properties including specific surface area, pore volume, and surface chemistry are reviewed in detail. Importantly, we discuss the relationship between the pore structure of prepared porous carbon with surface functional groups, and the energy storage performance in various energy storage fields for different biomass sources and thermal conversion methods. Finally, the conclusion and prospective are concluded to give an outlook for the development of biomass carbon materials, and energy storage applications technologies. This review demonstrates significant potentials for energy applications of biomass materials, and it is expected to inspire new discoveries to promote practical applications of biomass materials in more energy storage and conversion fields.  相似文献   
12.
Natural gas foam can be used for mobility control and channel blocking during natural gas injection for enhanced oil recovery, in which stable foams need to be used at high reservoir temperature, high pressure and high water salinity conditions in field applications. In this study, the performance of methane (CH4) foams stabilized by different types of surfactants was tested using a high pressure and high temperature foam meter for surfactant screening and selection, including anionic surfactant (sodium dodecyl sulfate), non-anionic surfactant (alkyl polyglycoside), zwitterionic surfactant (dodecyl dimethyl betaine) and cationic surfactant (dodecyl trimethyl ammonium chloride), and the results show that CH4-SDS foam has much better performance than that of the other three surfactants. The influences of gas types (CH4, N2, and CO2), surfactant concentration, temperature (up to 110°C), pressure (up to 12.0 MPa), and the presence of polymers as foam stabilizer on foam performance was also evaluated using SDS surfactant. The experimental results show that the stability of CH4 foam is better than that of CO2 foam, while N2 foam is the most stable, and CO2 foam has the largest foam volume, which can be attributed to the strong interactions between CO2 molecules with H2O. The foaming ability and foam stability increase with the increase of the SDS concentration up to 1.0 wt% (0.035 mol/L), but a further increase of the surfactant concentration has a negative effect. The high temperature can greatly reduce the stability of CH4-SDS foam, while the foaming ability and foam stability can be significantly enhanced at high pressure. The addition of a small amount of polyacrylamide as a foam stabilizer can significantly increase the viscosity of the bulk solution and improve the foam stability, and the higher the molecular weight of the polymer, the higher viscosity of the foam liquid film, the better foam performance.  相似文献   
13.
针对姬塬油田欠注井现象日益严重、堵塞物类型复杂造成常规酸化无法同时解除多种堵塞等问题,从堵塞物分析和解堵机理入手,研究了一种适用性较广的分子膜/混合有机酸复合解堵体系,主要由混合有机酸、新型分子膜、解聚剂和助剂组成。实验结果表明,该复合解堵体系具有优良的解堵性能,对现场垢样的溶垢率普遍能达到80%以上,对聚合物的降黏率可达到90%以上,适用于深部解堵,且能够有效避免二次沉淀的产生。现场应用效果表明,分子膜/混合有机酸复合解堵技术能够有效降低注水压力,提高日注水量,适用于大部分欠注井的地层改造。  相似文献   
14.
赵靖舟  孟选刚  韩载华 《石油学报》2021,41(12):1513-1526
延安以东和以北的鄂尔多斯盆地东北部地区曾被认为位处三叠纪延长组7段(长7段)沉积期古湖盆的"边缘",一些学者认为该区延长组烃源岩不发育,因而其油藏原油系湖盆中心生成的原油经长距离侧向运移而来;但也有研究认为,包括盆地边缘在内的整个鄂尔多斯盆地致密油藏均为近源成藏。为明确盆地东部地区延长组原油来源,对三叠纪湖盆"东缘"七里村油田的主力油层延长组6段(长6段)原油开展了原油地球化学和油源对比研究。七里村油田长6段原油具有高饱和烃、高饱芳比、低非烃和低沥青质的特征,正构烷烃呈前高单峰型,主峰碳为C19,生物标志化合物分析显示长6段原油为同源成熟原油,生油母质以藻类等低等水生生物为主,混有陆源高等植物,母源沉积环境为偏还原性的淡水湖泊。七里村油田长6段原油与本地区长7段黑色泥页岩和暗色泥岩2种烃源岩均具有明显亲缘关系,而与志丹、富县等湖盆中心地区的长7段烃源岩在族组成、生物标志化合物和稳定碳同位素特征上均存在明显区别。综合分析认为七里村油田长6段原油并非湖盆中心长7段优质烃源岩所生油气经长距离运移而来,而主要为原位长7段烃源岩生成的原油经垂向运移和短距离侧向运移在长6段等储层中聚集成藏,属于近源成藏。  相似文献   
15.
15 wt.%Ni-12.5 wt.%Co–Al2O3 catalysts promoted with Fe, Mn, Cu, Zr, La, Ce, and Ba were prepared by a novel solid-state synthesis method and employed in CO2 methanation reaction. BET, XRD, EDS, SEM, TPR, TGA, and FTIR analyses were conducted to identify the chemicophysical characteristics of the prepared samples. The addition of Fe, Mn, La, Ce, and Ba was effective to improve the catalytic performance of the 15 wt%Ni-12.5 wt%Co–Al2O3 due to the higher CO2 adsorption capacity of the promoted catalysts. Among the studied promoters, the Fe-promoted catalyst possessed the highest catalytic activity (XCO2 = 61.2% and SCH4 = 98.87% at 300 °C). Also, the effect of calcination temperature, feed composition, and GHSV on the performance of the 15 wt%Ni-12.5 wt%Co-5wt%Fe–Al2O3 catalyst in CO2 methanation reaction was assessed. The outcomes confirmed that the 15 wt%Ni-12.5 wt%Co-5wt%Fe–Al2O3 catalyst with the BET area of 122.4 m2/g and the highest pore volume and largest pore diameter had the highest catalytic activity. Also, the catalytic performance in the methanation of carbon monoxide was studied, and 100% conversion of carbon monoxide was observed at 250 °C.  相似文献   
16.
为揭示钻井液浸泡岩石产生表面形貌损伤引起井壁失稳,选取砂岩、页岩岩样,利用三维光学显微镜,对不同温度钻井液浸泡作用前后的岩石表面形貌进行测试,定量分析其特征参数,探讨温度对岩石表面形貌的影响机制及损伤度。结果表明:随温度的升高,特征参数Sa、Sq、Sk整体上呈增大趋势,特征参数Sr整体上呈减小趋势,导致其形貌轮廓的粗糙度、离散性、波动性增加,轮廓起伏度降低,对称性优于浸泡前;在30~120 ℃时,形貌损伤度逐渐增加,在120~150 ℃时,形貌损伤度降低,形貌损伤度极值点TS在120~150 ℃之间。砂岩和页岩的高度特征参数的损伤度大于纹理特征参数的损伤度。   相似文献   
17.
Highly active ReS2 nanocatalysts were prepared by CVD method and characterized by XRD, BET -BJH, Raman spectroscopy, XPS, TPR, NH3-TPD, SEM, and HRTEM techniques. Catalytic activities were used in upgrading heavy crude oil using methane as hydrogen source. The results showed a significant increase in API and decrease in sulfur and nitrogen content of crude oil. RSM technique was used to investigate the interactive effects of temperature (200–400 °C), pressure (20–40 bar) and dosage of nanocatalyst (0.5–2 wt. %) on the performance of HDS reaction. The results represent that the maximum predicted HDS activity (74.375%) was estimated under the optimal conditions (400 °C, 20 bars, and 2 wt % of nanocatalyst). Also, the effect of reaction temperature, pressure and dosage of ReS2 nanorods catalyst on HDN of heavy crude oil was investigated and highest efficiency in the HDN process (93%) occurred at 400 °C and 40 bar using 2 wt % ReS2.  相似文献   
18.
Electric vehicles (EVs) are considered a promising alternative to conventional vehicles (CVs) to alleviate the oil crisis and reduce urban air pollution and carbon emissions. Consumers usually focus on the tangible cost when choosing an EV or CV but overlook the time cost for restricting purchase or driving and the environmental cost from gas emissions, falling to have a comprehensive understanding of the economic competitiveness of CVs and EVs. In this study, a life cycle cost model for vehicles is conducted to express traffic and environmental policies in monetary terms, which are called intangible cost and external cost, respectively. Battery electric vehicles (BEVs), fuel cell electric vehicles (FCEVs), and CVs are compared in four first-tier, four new first-tier, and 4 s-tier and below cities in China. The comparison shows that BEVs and FCEVs in most cities are incomparable with CVs in terms of tangible cost. However, the prominent traffic and environmental policies in first-tier cities, especially in Beijing and Shanghai, greatly increase the intangible and external costs of CVs, making consumers more inclined to purchase BEVs and FCEVs. The main policy benefits of BEVs and FCEVs come from three aspects: government subsidies, purchase and driving restrictions, and environmental taxes. With the predictable reduction in government subsidies, traffic and environmental policies present important factors influencing the competitiveness of BEVs and FCEVs. In first-tier cities, BEVs and FCEVs already have a competitive foundation for large-scale promotion. In new first-tier and second-tier and below cities, stricter traffic and environmental policies need to be formulated to offset the negative impact of the reduction in government subsidies on the competitiveness of BEVs and FCEVs. Additionally, a sensitivity analysis reveals that increasing the mileage and reducing fuel prices can significantly improve the competitiveness of BEVs and FCEVs, respectively.  相似文献   
19.
Relatively low efficiency is the biggest obstacle to the popularization of water electrolysis, which is a particularly feasible way to produce super-pure hydrogen. Imposing a magnetic field can increase the hydrogen production efficiency of water electrolysis. However, the enhancement's detailed mechanism still lacks an insightful understanding of the bubbles' micro vicinity. Our recent work aims to understand why the micro-magnetohydrodynamic (MHD) convection hinders single bubbles' detachment on the microelectrode. A water electrolysis experiment by microelectrode is performed under an electrode-normal magnetic field, and dynamic analysis of the single bubble growing on microelectrodes is performed. The variation of bubble diameter with time in the presence or absence of the magnetic field was measured, and the forces acting on the bubble were quantified. The result shows that the micro-MHD convection, induced by Lorentz force, can give rise to a downward hydrodynamic pressure force that will not appear in large-scale MHD convection. This force can be of the same magnitude as the surface tension, so it dramatically hinders bubbles' detachment. Besides, the Kelvin force provides a new potential way for further improving the efficiency of water electrolysis.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号